Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice.
نویسندگان
چکیده
Hypomorphic mutations in the human SPINT2 gene cause a broad spectrum of abnormalities in organogenesis, including organ and digit duplications, atresia, fistulas, hypertelorism, cleft palate and hamartoma. SPINT2 encodes the transmembrane serine protease inhibitor HAI2 (placental bikunin), and the severe developmental effects of decreased HAI2 activity can be hypothesized to be a consequence of excess pericellular proteolytic activity. Indeed, we show here that HAI2 is a potent regulator of protease-guided cellular responses, including motogenic activity and transepithelial resistance of epithelial monolayers. Furthermore, we show that inhibition of the transmembrane serine protease matriptase (encoded by St14) is an essential function of HAI2 during tissue morphogenesis. Genetic inactivation of the mouse Spint2 gene led to defects in neural tube closure, abnormal placental labyrinth development associated with loss of epithelial cell polarity, and embryonic demise. Developmental defects observed in HAI2-deficient mice were caused by unregulated matriptase activity, as both placental development and embryonic survival in HAI2-deficient embryos were completely restored by the simultaneous genetic inactivation of matriptase. However, neural tube defects were detected in HAI2-deficient mice even in the absence of matriptase, although at lower frequency, indicating that the inhibition of additional serine protease(s) by HAI2 is required to complete neural development. Finally, by genetic complementation analysis, we uncovered a unique and complex functional interaction between HAI2 and the related HAI1 in the regulation of matriptase activity during development. This study indicates that unregulated matriptase-dependent cell surface proteolysis can cause a diverse array of abnormalities in mammalian development.
منابع مشابه
Reduced Prostasin (CAP1/PRSS8) Activity Eliminates HAI-1 and HAI-2 Deficiency–Associated Developmental Defects by Preventing Matriptase Activation
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epi...
متن کاملRegulation of Feto-Maternal Barrier by Matriptase- and PAR-2-Mediated Signaling Is Required for Placental Morphogenesis and Mouse Embryonic Survival
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functiona...
متن کاملDelineation of proteolytic and non-proteolytic functions of membrane-anchored serine protease Prss8/prostasin
The membrane-anchored serine proteases prostasin and matriptase initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically-inactive prostasin, unlike prostasin null mice, are viable, indicating that at least some of prostasin’s functions are non-proteolytic. Here we used knockin mice expressing catalytically-inactive prostasin (Prss8) to sh...
متن کاملDelineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin.
The membrane-anchored serine proteases prostasin (PRSS8) and matriptase (ST14) initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically inactive prostasin are viable, unlike prostasin null mice, indicating that at least some prostasin functions are non-proteolytic. Here we used knock-in mice expressing catalytically inactive prostasin (Pr...
متن کاملRoles for Laminin in Embryogenesis: Exencephaly, Syndactyly, and Placentopathy in Mice Lacking the Laminin α5 Chain
Laminins are the major noncollagenous glycoproteins of all basal laminae (BLs). They are alpha/beta/gamma heterotrimers assembled from 10 known chains, and they subserve both structural and signaling roles. Previously described mutations in laminin chain genes result in diverse disorders that are manifested postnatally and therefore provide little insight into laminin's roles in embryonic devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 15 شماره
صفحات -
تاریخ انتشار 2009